初中数学优秀教案

时间:2024-07-25 17:22:25
初中数学优秀教案

初中数学优秀教案

作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。写教案需要注意哪些格式呢?以下是小编为大家整理的初中数学优秀教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学优秀教案1

教学目标:

1、知识与技能:使学生经历相似多边形概念的形成过程,了解相似多边形的定义,并能根据定义判断两个多边形是否相似。

2、过程与方法:在探索相似多边形本质特征的过程中,进一步发展学生归纳、类比、反思、交流等方面的能力,体会反例的作用。

3、情感态度与价值观:通过观察、推断得到数学猜想、获得数学结论的过程,体验数学活动充满了探索性和创造性。

教学重点:探索相似多边形的定义过程,以及用定义去判断两个多边形是否相似。

  教学难点:探索相似多边形的定义过程。

教学过程:

(一)创设情景,导入新课。(3分钟)

由于学生已经学习了形状相同的图形,在这里我向学生展示一组图片(课件),引导学生从中找出形状相同的图形。学生回答后,利用课件演示抽象出多边形。

大多数学生可能会指出黑板边框的内外边缘所围成的矩形的形状也相同。我紧接着创设悬念:这两个矩形的形状相同吗?

利用课件演示,把内边缘的矩形的长和宽按相同比例放大后不能与外边缘矩形重合。此时的学生肯定倍感疑惑,急切想探个究竟。教师顺势导入新课:

那么满足什么条件的多边形才是形状相同的多边形呢?今天我们一起来探究相似多边形。

(二)自主学习,合作探究。(15分钟)

1、动手实验,初步感知定义。

课前发给每个小组一套相似多边形的图片(其中包括两个相似三角形、一个等边三角形、两个相似四边形),组织学生按形状相同给多边形找朋友。然后引导学生以小组为单位从中选择一组多边形探究解决下面问题。

(1)在这两个多边形中,是否有相等的内角?设法验证你的猜想。

(2)在这两个多边形中,相等的内角的两边是否成比例?

(设计意图:引导学生分组讨论、探究、验证、交流,并进行演示,着重引导学生说明验证的方法,无论学生提出什么样的验证方式,只要有道理,教师都应给予充分肯定和鼓励。)

对相等内角的两边是否对应成比例这个问题学生可能会感到困难,由于学生已经学习了成比例线段,我会利用这一点启发学生运用测量、计算的方法解决这一难点。

利用多媒体演示形状相同的六边形的对应角相等,然后让学生观察计算得到,相等的内角的两边成比例。然后给出对应角、对应边的概念,引导学生明确对应角、对应边的含义。

2、特例探究,进一步体验定义。 (课件出示问题)

例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?

(1)三角形ABC与正三角形DEF;

(2)正方形ABCD与正方形EFGH.

(设计意图:引导学生通过自主探究解决这个问题后进行适当引申,使学生认识到:边数相同的正多边形都相似。)

3、归纳总结,形成概念。

教师设问:回忆一下我们刚才探究过的每一组多边形,你能发现它们的共同特点吗?(课件出示四组图形)

(设计意图:引导学生尝试用自己的语言叙述定义,教师给予规范并板书。随即给出相似多边形的表示方法和相似比的概念,接下来引导学生回忆表示全等三角形时应注意的问题,也就是要把表示对应顶点的字母写在对应的位置上,然后引导学生用类比的方法得到:在记两个多边形相似时也要把表示对应顶点的字母写在对应的位置上,说明相似比与两个多边形叙述的顺序有关。)

4、深化理解。

(1)满足什么条件的两个多边形相似?

(2)如果两个多边形相似,那么它们的对应角和对应边有什么关系?

(设计意图:使学生认识到:相似多边形的定义既是最基本最重要的判定方法,也是最本质最重要的特征。)

(三)辨析研讨,知识深化。(14分钟)

1、议一议:

(1)观察下面两组图形,图(1)中的两个图形相似吗?为什么?图(2)中的两个图形呢?与同桌交流。 (课件出示图形)

(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?

(3)如果两个菱形相似,那么他们需要满足什么条件?

(设计意图:为了培养学生从多角度理解问题,我运用教材中两个典型的反例,引导学生讨论探究,使学生认识到:不相似的两个多边形的角也可能对应相等,不相似的两个多边形的边也可能对应成比例;反过来说:只具备各角分别对应相等或各边分别对应成比例的多边形不一定相似。进而使学生明确:判断两个多边形形相似,各角分别对应相等、各边分别对应成比例这两个条件缺一不可。通过正反两方面的对照,能使学生更深刻地理解相似多边形的定义。这是个易错点,教学时应注意给学生留出充分思考交流的时间。另外在设计时,我在教材原有内容的基础上添加了菱形的情况(见课件),引导学生探索两个菱形相似需要满足什么样的条件。)

2、做一做。

设问:学到这儿,你认为黑板边框内外边缘所成的这两个矩形相似吗?请你计算说明。课件出示问题:

一块长3m、宽1.5m的矩形黑板,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?(学生自主探索解决)

(设计意图:为了满足学生多样化的学习需求,使不同的学生都能获得令自己满意的数学知识,我把此题进行了适当的拓展和延伸。)

拓展一:如果将黑板的上边框去掉,其他条件不变。

那么边框内外边缘所成的矩形相似吗?为什么?

拓展二:在拓展一的基础上,如果矩形的长为2a,宽为a,

边框的宽度为x。那么边框内外边缘所成的矩形还相似吗?为什么?

(设计意图:引导学生讨论计算,解决问题。目的是让学生明确并不是所有相互套叠的两个矩形都不相似。使学生初步认识到直观有时是不可靠的,研究数学问题需要在提出猜想的基础上进行推理和计算,帮助学生养成严谨的学风。)

(四)学以致用,巩固提高。(6分钟)

慧眼识金!

1、判断下列各题是否正确:

(1)所有的矩形都相似。

(2)所有的正方形都相似。

(3)对应边成比例的两个多边形相似 问题解决!

2、下图中两面国旗相似,则它们对应边的比为 。

3、如图,两个正六边形广场砖的边长分别为a和b,它们相似吗?为什么?

(课件出示图形)

(设计意图:为了体现相似图形在生活中的广泛应用,我以实际问题为背景设计练习题 ……此处隐藏18386个字……填空题为多,也有选择题和解答题。

教学过程:

因式分解知识点

多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

(1)提公因式法

如多项式

其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用

写出结果。

(3)十字相乘法

对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么

2、教学实例:学案示例

3、课堂练习:学案作业

4、课堂:

5、板书:

6、课堂作业:学案作业

7、教学反思:

初中数学优秀教案15

学习方式:

从具体问题情景中探索体会合并同类项的含义。

逆用乘法分配律探求合并同类项法则。

通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。

教学目标:

1、在具体情境中理解、掌握同类项的定义;

2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。

3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。

4、通过“合并同类项”的学习,继续培养学生的运算能力。

教学的重点、难点和疑点

1、重点:同类项的概念,合并同类项的法则。

2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。

3、疑点:同类项与同次项的区别。

教具准备

投影仪(电脑)、自制胶片

教学过程:

提出问题

创设情景 (出示投影)

如图的长方形由两个小长方形组成,求这个长方形的面积。

①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:

(8+5)n

②接着引导学生写出等式:

8n+5n=(8+5)n=13n

启发学生观察上式是怎样的一种变化;

它类似于我们前面学过的什么运算律

为什么8n与5n可以合并成一项(组织学生充分

讨论,从而引出同类项的概念)

③同类项的概念

举出一些具有代表性的同类项的实际例子。

如:-7a2b , 2a2b ;

8n , 5n ;

3x2, -x2

引导学生观察上面给出的几组代数式具有什么共同特点:

①所含的字母相同

②相同字母的指数也相同

教师顺势提出同类项的概念

强调同类项必须满足以上两条

④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。 学生观察,思考

讨论交流

(反例巩固) 出示问题;

x与y,

a2b与ab2,

-3pa与3pa

abc与ac,

a2和a3 是不是同类项

(给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)

其中:a2b与ab2可让学生充分讨论交流。

(教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)

(引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。

紧扣定义

加以判别

例1 根据乘法分配律合并同类项

(1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3

(教师强调乘法分配律的逆运用)

(学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)

由此引导学生总结出合并同类项的法则:

在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。

学生思考

解答(找二生板演其他学生独立写出过程)

总结法则

可根据情况适当复习关于乘法分配律的有关知识

通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。

应用法则

例2,合 并同类项

①3a+2b-5a-b

②-4ab+8-2b2-9ab-8

给学生留有足够的独立的思考时间

找二生到黑板上板演。

学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。

强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。

教师不给任何提示

学生在练习本上完成,然后同桌同学互相交换评判。

(二生到黑板上板演)

变式

应用 补充例题

例3,求代数式的值

①2x2-5x+x2+4x-3 x2-2 其中x=

②-3 x2+5x-0.5 x2+x-1 其中x=2

出示 例题后,教师不要给任何提示,先让学生独立思考。

部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。

问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。

独立完成

分析比较

寻求简便方法

随堂

练习 1、合并同类项

①3y+ y=__________

②3b-3a2+1+a3-2b=____ _______

③2y+6y+2xy-5=_____________

2、求代数式的值

8 p2-7q+6q-7p2-7

其中p=3 q=3

练习交流合作

教师可根据情况适当补充

  小结 今天你学会了哪些知识?获得了哪些方法,

有什么体会? 自己总结

作业 教材课后习题

《初中数学优秀教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式